1. Cardiovascular Response to Intraneural Right Vagus Nerve Stimulation in Adult Minipig. Agnesi F, Zinno C, Strauss I, Dushpanova A, Casieri V, Bernini F, Terlizzi D, Gabisonia K, Paggi V, Lacour SP, Lionetti V, Micera S. Neuromodulation. 2023 Mar 29:S1094-7159(23)00131-9. doi: 10.1016/j.neurom.2023.03.002
2. A novel ex-vivo isolated rabbit heart preparation to explore the cardiac effects of cervical and cardiac vagus nerve stimulation. Kronsteiner B, Haberbusch M, Aigner P, Kramer AM, Pilz PM, Podesser BK, Kiss A, Moscato F. Sci Rep. 2023 Mar 14;13(1):4214. doi: 10.1038/s41598-023-31135-4
3. Quantification of paravalvular leaks associated with TAVI implants using 4D MRI in an aortic root phantom made possible by the use of 3D printing. Aigner P, Sella Bart E, Panfili S, Körner T, Mach M, Andreas M, Königshofer M, Saitta S, Redaelli A, Schmid A, Moscato F. Front Cardiovasc Med. 2023 Jan 19;10:1083300. doi: 10.3389/fcvm.2023.1083300
4. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration. Bianchini M, Micera S, Redolfi Riva E. Pharmaceutics. 2023 Feb 14;15(2):640. doi: 10.3390/pharmaceutics15020640
5. Closed-loop vagus nerve stimulation for heart rate control evaluated in the Langendorff-perfused rabbit heart. Haberbusch M, Kronsteiner B, Kramer AM, Kiss A, Podesser BK, Moscato F. Sci Rep. 2022 Nov 5;12(1):18794. doi: 10.1038/s41598-022-23407-2
6. A Numerical Model of the Acute Cardiac Effects Provoked by Cervical Vagus Nerve Stimulation. Haberbusch M, Frullini S, Moscato F. IEEE Trans Biomed Eng. 2022 Feb;69(2):613-623. doi: 10.1109/TBME.2021.3102416
7. Mapping the functional anatomy and topography of the cardiac autonomic innervation for selective cardiac neuromodulation using MicroCT. Kronsteiner B, Zopf LM, Heimel P, Oberoi G, Kramer AM, Slezak P, Weninger WJ, Podesser BK, Kiss A, Moscato F. Front Cell Dev Biol. 2022 Sep 12;10:968870. doi: 10.3389/fcell.2022.968870
8. A lightweight learning-based decoding algorithm for intraneural vagus nerve activity classification in pigs. Pollina L, Vallone F, Ottaviani MM, Strauss I, Carlucci L, Recchia FA, Micera S, Moccia S. J Neural Eng. 2022 Aug 11;19(4). doi: 10.1088/1741-2552/ac84ab
9. A method to establish functional vagus nerve topography from electro-neurographic spontaneous activity. Pitzus A, Romeni S, Vallone F, Micera S. Patterns (N Y). 2022 Oct 31;3(11):100615. doi: 10.1016/j.patter.2022.100615
10. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Ottaviani MM, Vallone F, Micera S, Recchia FA. Front Cardiovasc Med. 2022 Apr 7;9:866957. doi: 10.3389/fcvm.2022.866957
11. Late plasma exosome microRNA-21-5p depicts magnitude of reverse ventricular remodeling after early surgical repair of primary mitral valve regurgitation. Pizzino F, Furini G, Casieri V, Mariani M, Bianchi G, Storti S, Chiappino D, Maffei S, Solinas M, Aquaro GD, Lionetti V. Front Cardiovasc Med. 2022 Jul 29;9:943068. doi: 10.3389/fcvm.2022.943068
12. A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies. Liu F, Wu Y, Almarri N, Habibollahi M, Lancashire HT, Bryson B, Greensmith L, Jiang D, Demosthenous A. IEEE Trans Biomed Circuits Syst. 2022 Oct;16(5):752-765. doi: 10.1109/TBCAS.2022.3202026
13. Polysaccharide Layer-by-Layer Coating for Polyimide-Based Neural Interfaces. Redolfi Riva E, D’Alessio A, Micera S. Micromachines (Basel). 2022 Apr 28;13(5):692. doi: 10.3390/mi13050692
14. An Implantable Phase Locked Loop MEMS-Based Readout System for Heart Transplantation. Neshatvar N, Schormans M, Jiang D, Schmitt S, Detemple P and Demosthenous A. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 10, pp. 4168-4172, Oct. 2022, doi: 10.1109/TCSII.2022.3190796
15. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Pharmacol Res. 2021 Jun;168:105581. doi: 10.1016/j.phrs.2021.105581
16. Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals. Vallone F, Ottaviani MM, Dedola F, Cutrone A, Romeni S, Panarese AM, Bernini F, Cracchiolo M, Strauss I, Gabisonia K, Gorgodze N, Mazzoni A, Recchia FA, Micera S. J Neural Eng. 2021 Jul 7;18(4). doi: 10.1088/1741-2552/ac0d42M
17. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. J Neural Eng. 2021 Mar 17;18(4). doi: 10.1088/1741-2552/abe6b9
18. Progress and challenges of implantable neural interfaces based on nature-derived materials. Redolfi Riva E, Micera S. Bioelectron Med. 2021 Apr 27;7(1):6. doi: 10.1186/s42234-021-00067-7
19. Implantable Fiber Bragg Grating Sensor for Continuous Heart Activity Monitoring: Ex-Vivo and In-Vivo Validation. Ferraro D et al. IEEE Sensors Journal. 2021 21(13):14051-14059. doi: 10.1109/JSEN.2021.3056530
20. A Goertzel Filter-Based System for Fast Simultaneous Multi-Frequency EIS. Regnacq L, Wu Y, Neshatvar N, Jiang D and Demosthenous A. IEEE Transactions on Circuits and Systems II: Express Briefs 2021 68(9): 3133-3137. doi: 10.1109/TCSII.2021.3092069
21. A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation. Wu Y, Jiang D, Demosthenous A. IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1186-1195. doi: 10.1109/TBCAS.2021.3139996
22. Changes in Resting and Exercise Hemodynamics Early After Heart Transplantation: A Simulation Perspective. Haberbusch M, De Luca D, Moscato F. Front Physiol. 2020 Nov 6;11:579449. doi: 10.3389/fphys.2020.579449
23. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. Lo Presti et al. IEEE Access 202 8:156863-156888 doi: 10.1109/ACCESS.2020.3019138. https://ieeexplore.ieee.org/document/9174987
24. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Cutrone A, Micera S. Adv Healthc Mater. 2019 Dec;8(24):e1801345. doi: 10.1002/adhm.201801345
25. Accurate, Very Low Computational Complexity Spike Sorting Using Unsupervised Matched Subspace Learning. Zamani M, Sokolic J, Jiang D, Renna F, Rodrigues MRD, Demosthenous A. IEEE Trans Biomed Circuits Syst. 2020 Apr;14(2):221-231. doi: 10.1109/TBCAS.2020.2969910
26. Time Stamp – A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications. Wu Y, Jiang D, Habibollahi M, Almarri N, Demosthenous A. IEEE Trans Biomed Circuits Syst. 2020 Oct;14(5):997-1007. doi: 10.1109/TBCAS.2020.3012057
27. Short-Range Quality-Factor Modulation (SQuirM) for Low Power High Speed Inductive Data Transfer. Schormans M, Jiang D, Valente V and Demosthenous A. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 9, pp. 3254-3265, Sept. 2019, doi: 10.1109/TCSI.2019.2922124
CONFERENCE ABSTRACTS/PAPERS
1. Zinno C et al. Development of a 3D Printing Strategy for Completely Polymeric Neural Interfaces Fabrication. 11th International IEEE/EMBS Conference on Neural Engineering (NER) doi: 10.1109/NER52421.2023.10123838
2. Kronsteiner, B., Zopf, Lydia M., Heimel, P., Oberoi,G., Kramer, Anne M., Slezak, P., Reissig, L., Blumer, R., Maierhofer, U., Azmann O., Weninger, WJ., Podesser, B.K., Kiss, A., Moscato, F. „Anatomical and topographical characterization of the cardiac autonomic innervation for selective cardiac vagus nerve stimulation in pigs, rabbits, and humans”. 11th International IEEE EMBS Conference on Neural Engineering, Baltimore, MD, USA, April 25-27, 2023
3. Kronsteiner, B., Oberoi, G., Zopf, L., Heimel, P., Slezak, P., Weninger, WJ., Podesser, BK., Kiss, A., Moscato, F., „Topographical mapping of the cardiac autonomic innervation for selective cardiac neuromodulation in pigs and rabbits using MicroCT”. European Society of Cardiology, Budapest, Hungary, April 29 – May 1, 2022.
4. Kronsteiner, B., Anderana, M., Oberoi, G., Zopf, L., Heimel, P., Blumer, R., Reissig, L., Geyer, S., Slezak, P., Weninger, WJ., Podesser, BK., Kiss, A., Moscato, F., „Multimodal imaging of the cardiac autonomic innervation for development of a selective cardiac neuroprosthesis”, SPIE, Photonics West BIOS, San Francisco, CA, United States of America, January 22-27, 2022.
5. Kronsteiner, B., Haberbusch, M., Kramer, A.M., Pilz, M.P., Kiss, A., Podesser, B.K. and Moscato, F. “A novel ex-vivo isolated rabbit heart preparation to explore the cardiac effects of cervical and cardiac vagus nerve stimulation”. Joint Annual Conference of the Austrian, German and Swiss Societies for Biomedical Engineering, Innsbruck, Austria, September 28-30, 2022.
6. Pollina L et al. A fast and accurate learning-based decoding algorithm for the classification of cardiovascular and respiratory challenges using intraneural electrodes in the pig vagus nerve. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). doi: 10.1109/EMBC48229.2022.9871818
7. Strauss, I., De Luca, D., Panarese A. M., et al. (2021). “A Software Tool for the Real-Time in Vivo Evaluation of Neural Electrodes’ Selectivity” 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021, doi: 10.1109/NER49283.2021.9441334
8. Strauss, I., Zinno, C., Giannotti, A., Ottaviani, M., et al. (2021). “Adaptation and Optimization of an Intraneural Electrode to Interface with the Cervical Vagus Nerve” 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021, doi: 10.1109/NER49283.2021.9441131
9. D. De Luca,I. Strauss,S. Micera (2021) “A Software Tool for Assessing Autonomic Functions During Thoracic Vagus Nerve Stimulation”, 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021
10. Giannotti A., Strauss I., Musco S., Recchia F., Del Popolo G., Micera S., (2021) Pudendal “Nerve Stimulation to Restore Bladder Fullness Perception”, 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021
11. Wu Y, Jiang D, Neshatvar N, Demosthenous A, “A Power Efficient Time-to-Current Stimulator for Vagal-Cardiac Connection after Heart Transplantation”, IEEE International Symposium on Circuits and Systems (ISCAS), 2021
12. Habibollahi M, Hanzaee FF, Jiang D, Lancashire H, Demosthenous A, “An Active Microchannel Neural Interface with Artifact Reduction”, IEEE International Symposium on Circuits and Systems (ISCAS), 2021
13. Lancashire HT, Habibollahi M, Jiang D, Demosthenous A, “Evaluation of Commercial Connectors for Active Neural Implants”, 10th International IEEE EMBS Conference on Neural Engineering (NER), 2021
14. Haberbusch, M., Moscato, F., “A model-based analysis of the relationship between cardiac autonomic markers and cardiac reinnervation in heart transplant patients”, Online 16th YSA PhD Symposium (2021).
15. Neshatvar N, Regnacq L, Jiang D, Wu Y, Demosthenous A, “Monitoring Myocardial Edema Tissue with Electrical Impedance Spectroscopy,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-4
16. Wu Y, Jiang D, Neshatvar N, Hanzaee FF, Demosthenous A, “Towards a Universal Methodology for Performance Evaluation of Electrical Impedance Tomography Systems using Full Reference SNR,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-5
17. Haberbusch, M., Kronsteiner, B., Kiss, A., and Moscato F., “Model-based development of a closed-loop heart rate control strategy using vagus nerve stimulation”. Annual Meeting of the Austrian Society for Biomedical Engineering, Graz (Austria), September 30 – October 1, 2021.
18. Haberbusch, M., and Moscato F., “How computer simulations may help us understand what heart rate variability tells us about cardiac reinnervation after heart transplantation”. 47th Conference of the European Society for Artificial Organs, London (United Kingdom), September 7-11, 2021.
19. Haberbusch, M., De Luca, D. and Moscato F., “Preliminary Results of a Numerical Model to Predict Heart Rate Variability Changes Following Cardiac Denervation and Later Reinnervation in Heart Transplant Patients”. 8th European Medical and Biological Engineering Conference, Portorož (Slovenia), November 27 – December 3, 2020.
20. Haberbusch, M., Frullini, S. and Moscato, F., “Towards Vagus Nerve Stimulation to Restore Heart Rate Control in Heart Transplant Patients: A Simulation Study”. 18th Nordic Baltic Conference on Biomedical Engineering and Medical Physics, Reykjavik (Iceland), September 17-20, 2020.
21. Abstract on the preliminary results of our numerical VNS model that we presented at the 18th Nordic Baltic Conference on Biomedical Engineering and Medical Physics: “Towards Vagus Nerve Stimulation to Restore Heart Rate Control in Heart Transplant Patients: A Simulation Study”
22. Abstract on the hemodynamic model that was included in the proceedings of the 8th European Medical and Biological Engineering Conference 2020 (it was not orally presented since the conference was canceled on short notice due to the pandemic): “Preliminary Results of a Numerical Model to Predict Heart Rate Variability Changes Following Cardiac Denervation and Later Reinnervation in Heart Transplant Patients”
23. Joseph Tharayil, Esra Neufeld, Antonino Cassara and Niels Kuster, Insights From Applying the Reciprocity Theorem to Compute the Compound Action Potential (CAP) in Complex Nerves Models, Abstract Collection of the 22nd Meeting of the Swiss Society for Neuroscience (SSN) 2020, Bern CH, February 22, 2020
24. J. J. Tharayil, E. Neufeld, A. Cassara, and N. Kuster, “Insights from applying the reciprocity theorem to compute the compound action potential (CAP) in complex nerves models,” Abstract Collection of the Joint Annual Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association (BioEM 2020), June 2020. pp. 9–12, 2020
25. M. N. Polatoglu, A. M. Cassara, E. Neufeld, B. Lloyd, and N. Kuster, “Development and optimization of image-based neurostimulation modelling for bioelectronic medicine,” Abstract Collection of the Joint Annual Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association (BioEM 2020), June 2020. pp. 270–273, 2020
26. Joseph Tharayil, Esra Neufeld, Antonino Cassara, and Niels Kuster, Insights From Applying the Reciprocity Theorem to Compute the Compound Action Potential (CAP) in Complex Nerves Models, Abstract Collection of the FENS Virtual Forum 2020, Glasgow UK, 11–15 July, 2020
27. N. Neshatvar, L. Regnacq, D. Jiang, Y. Wu and A. Demosthenous, “Monitoring Myocardial Edema Tissue with Electrical Impedance Spectroscopy,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Oct. 2020, doi: 10.1109/ISCAS45731.2020.9180610.
28. Haberbusch, M., Frullini, S., Moscato, F., “Towards Vagus Nerve Stimulation to Restore Heart Rate Control in Heart Transplant Patients: A Simulation Study”, Conference: 18th Nordic Baltic Conference on Biomedical Engineering and Medical Physics (2020).
29. Haberbusch M., Luna, J.L.V. and Mayr W., “Preliminary observations on the Interaction of Monosynaptic and Polysynaptic Posterior Root Reflexes in Human”. 13th Vienna International Workshop on Functional Electrical Stimulation, Vienna (Austria), September 23-24, 2019.
30. Haberbusch, M., Kronsteiner, B., Kiss, A., and Moscato F., “Preliminary Results on the Importance of Vagus Nerve Stimulation Parameters for Its Chronotropic Effects in Vagotomized Rabbits”. 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Guadalajara (Mexico), October 30 – November 5, 2021
31. I. Gupta et al., “Quantification of clinically applicable stimulation parameters for precision near-organ neuromodulation of human splenic nerves,” Commun. Biol., vol. 3, p. 577, Oct. 2020, doi: 10.1038/s42003-020-01299-0.
32. o2S2PARC Esra Neufeld, Nicolas Chavannes, Katie Zhi Zhuang, Antonino Cassarà, Bryn Lloyd, Pedro Crespo-Valero, Manuel Guidon, Odei Maiz, Sylvain Anderegg, Ignacio Pascual, Wolfgang Kainz, and Niels Kuster. Experimental Biology 2020 SPARC’s Open Online Simulation Platform for Computational Modeling of the ANS’s Physiological Role and its Modulation by Electroceutical Devices: